18,543 research outputs found

    Modular Synchronization in Multiversion Databases: Version Control and Concurrency Control

    Get PDF
    In this paper we propose a version control mechanism that enhances the modularity and extensibility of multiversion concurrency control algorithms. We decouple the multiversion algorithms into two components: version control and concurrency control. This permits modular development of multiversion protocols, and simplifies the task of proving the correctness of these protocols. An interesting feature of our framework is that the execution of read-only transactions becomes completely independent of the underlying concurrency control implementation. Also, algorithms with the version control mechanism have several advantages over most other multiversion algorithms

    Extreme self-organization in networks constructed from gene expression data

    Full text link
    We study networks constructed from gene expression data obtained from many types of cancers. The networks are constructed by connecting vertices that belong to each others' list of K-nearest-neighbors, with K being an a priori selected non-negative integer. We introduce an order parameter for characterizing the homogeneity of the networks. On minimizing the order parameter with respect to K, degree distribution of the networks shows power-law behavior in the tails with an exponent of unity. Analysis of the eigenvalue spectrum of the networks confirms the presence of the power-law and small-world behavior. We discuss the significance of these findings in the context of evolutionary biological processes.Comment: 4 pages including 3 eps figures, revtex. Revisions as in published versio

    The anthropic principle and the mass scale of the Standard Model

    Get PDF
    In theories in which different regions of the universe can have different values of the the physical parameters, we would naturally find ourselves in a region which has parameters favorable for life. We explore the range of anthropically allowed values of the mass parameter in the Higgs potential, μ2\mu^2. For μ2<0\mu^2<0, the requirement that complex elements be formed suggests that the Higgs vacuum expectation value vv must have a magnitude less than 5 times its observed value. For μ2>0\mu^2>0, baryon stability requires that ∣μ∣<<MP|\mu|<<M_P, the Planck Mass. Smaller values of ∣μ2∣|\mu^2| may or may not be allowed depending on issues of element synthesis and stellar evolution. We conclude that the observed value of μ2\mu^2 is reasonably typical of the anthropically allowed range, and that anthropic arguments provide a plausible explanation for the closeness of the QCD scale and the weak scale.Comment: 28 pages, LaTeX. No changes from version originally submitted to archive, except that problem with figure file has been correcte

    Distilling Quantum Entanglement via Mode-Matched Filtering

    Full text link
    We propose a new avenue towards distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    The refractive index and wave vector in passive or active media

    Full text link
    Materials that exhibit loss or gain have a complex valued refractive index nn. Nevertheless, when considering the propagation of optical pulses, using a complex nn is generally inconvenient -- hence the standard choice of real-valued refractive index, i.e. n_s = \RealPart (\sqrt{n^2}). However, an analysis of pulse propagation based on the second order wave equation shows that use of nsn_s results in a wave vector \emph{different} to that actually exhibited by the propagating pulse. In contrast, an alternative definition n_c = \sqrt{\RealPart (n^2)}, always correctly provides the wave vector of the pulse. Although for small loss the difference between the two is negligible, in other cases it is significant; it follows that phase and group velocities are also altered. This result has implications for the description of pulse propagation in near resonant situations, such as those typical of metamaterials with negative (or otherwise exotic) refractive indices.Comment: Phys. Rev. A, to appear (2009
    • …
    corecore